
Craig Chambers 219 CSE 501

Implementing Object-Oriented Languages

Key features:

• inheritance (possibly multiple)

• subtyping & subtype polymorphism

• message passing, dynamic binding

Subtype polymorphism is the key problem

• support uniform representation of data
(analogous to boxing for polymorphic data)

• e.g. every object has a class pointer, or a virtual fn table pointer,
at a known offset

• organize layout of data to make instance variable access
and method lookup & invocation fast

• multiple inheritance complicates this

• perform static analysis to bound polymorphism

• perform transformations to reduce polymorphism

Craig Chambers 220 CSE 501

Implementing single inheritance

Key idea: prefixing

• layout of superclass is a prefix of layout of subclass

+ instance variable access is just a load or store

+ can add new instance variables in subclasses

− cannot override or undefine instance variables

− multiple inheritance...

// OK: subclass polymorphism
Point p = new ColorPoint(3,4,Blue);

// OK: x and y have same offsets in all Point subclasses
int manhattan_distance = p.x + p.y;

x

y

x

y

color

class Point {
int x;
int y;

}

class ColorPoint
extends Point {

Color color;
}

Craig Chambers 221 CSE 501

Implementing dynamic dispatching (virtual functions)

Key idea: class-specific table of function pointers

• store pointer to table in each object

• assign table offset to method name,
just as instance variable offsets are assigned

• exploit prefixing in function table layout:
superclass’s function table layout is a prefix of
subclass’s function table layout

Dynamically-dispatched call sequence:

T obj = ...; ... obj.msg() ... ⇒
load *(obj + offset T:: table), table
load *(table + offset T::msg), method
call *method

+ dynamic dispatching is fast & constant-time

+ can add new methods, override old ones
(can undefine methods by leaving hole in function table)

− extra word of memory per object

− loads, indirect calls can be slow on pipelined machine

− no inlining

Craig Chambers 222 CSE 501

Example of function tables

x

y

class Point {
int x;
int y;

void draw();
int distance2origin();

}

table

class ColorPoint extends Point {
Color color;

void draw();
void reverse_video();

}

x

y

color

table

d2o

Point::draw

ColorPt::draw

ColorPt::r_v

draw

draw

d2o

Point::d2o

r_v

...

...

Craig Chambers 223 CSE 501

Multiple inheritance

Problem: prefixing doesn’t work with multiple inheritance

ColorPoint cp = new ColorPoint(3, 4, Blue);

Point p = cp; // OK

ColoredThing t = cp; // OK

// breaks:
ColorP cp2 = new ColorPoint(p.x, p.y, t.color);

x

y

color

class Point {
int x;
int y;

}

class ColoredThing {
Color color;

}

class ColorPoint
extends Point,

ColoredThing {
}

x

y

color

color

x

y

?

Craig Chambers 224 CSE 501

Clever solution: embedding, not prefixing

Embed layout of each superclass somewhere in object

• e.g. concatenate layouts of immediate superclasses,
then extend with subclass’s instance variables

Trick: adjust object pointer to point to appropriate embedded
object whenever use subclass polymorphism,
based on static type of pointer

• perform pointer arithmetic on
assignments, type casts, parameter & result passing
if static type of l.h.s. differs from r.h.s.

• must test for NULL pointer and not change, though

• constants to add/subtract determined by static types &
analysis of inheritance graph, at compile-time

+ fast access to instance variables

− some type-casts (implicit or explicit) now do arithmetic

− interior pointers complicate garbage collection

− type-casts outside the class hierarchy break:

void* p = new ColorPoint(...);
ColoredThing t = (ColoredThing) p;
... t.color ... // returns p.x !

Craig Chambers 225 CSE 501

Example

ColorPoint cp = new ColorPoint(3, 4, Blue);

Point p = cp; // OK

ColoredThing t = cp; // OK: adds 8 to cp

// now this works:
ColorP cp2 = new ColorPoint(p.x, p.y, t.color);

// this works, too:
ColorP cp3 = (ColorPoint) t; // subtracts 8 from t

x

y

color

class Point {
int x;
int y;

}

class ColoredThing {
Color color;

}

class ColorPoint
extends Point,

ColoredThing {
}

x

y

color

cp

p

t

Craig Chambers 226 CSE 501

Multiple inheritance and dynamic dispatching

Extend embedding to implement dynamic dispatching, too

• replicate function tables for each immediate superclass,
to avoid clashes in method offsets

− multiple function table pointers in object

ColorPoint cp = new ColorPoint(3, 4, Blue);

... cp.distance2origin() ...; // works

... cp.draw() ...; // works

ColoredThing t = cp; // works; adds 12 to cp

... t.reverse_video() ...; // works

Craig Chambers 227 CSE 501

Example of embedded function tables

x

y

class Point {
int x;
int y;

void draw();
int d2o();

}

table

class ColoredThing {
Color color;

void reverse_video() {
... self.color ...

}
}

x

y

table

d2o

draw

draw

d2o color

table r_v

color

table

r_v

cp

t

ColorPt::draw

class ColorPoint extends Point, ColoredThing {
void draw();

}

Craig Chambers 228 CSE 501

A problem

Simple embedding doesn’t always work!

... cp.reverse_video() ...;

// breaks: accesses self.x instead of self.color
// inside reverse_video method

Craig Chambers 229 CSE 501

Analysis of the problem

Problem:
implicit cast of actual receiver to formal receiver ignored

• sometimes need to do pointer arithmetic

How to fix it?

• caller can’t do it:
doesn’t know type of formal in callee

• callee can’t do it:
doesn’t know type of actual in caller

• function tables can do it:
caller’s offset known, callee’s offset known

Craig Chambers 230 CSE 501

An implementation strategy

Add an extra column to function table,
containing required pointer adjustment for receiver

Fetch and add adjustment to receiver pointer as part of call:

T obj = ...; ... obj.msg() ... ⇒
load *(obj + offset T:: table), table

load *(table + offset T::msg *2), method

load *(table + offset T::msg *2+4), delta

add obj, delta, obj;
call *method

− 5 instructions, not 3

• costs even if multiple inheritance not used!

− some space cost

− only works for receiver;
need some other mechanism if argument or result types
change via method overriding

[Stroustrup 87]

Craig Chambers 231 CSE 501

Example of function tables with offsets

r_v 0

d2o

draw 0

0

x

y

class Point {
int x;
int y;

void draw();
int d2o();

}

table

class ColoredThing {
Color color;

void reverse_video() {
... self.color ...

}
}

x

y

table

draw

d2o color

table r_v

color

table

cp

t

00

0

r_v 12

class ColorPoint extends Point, ColoredThing {
void draw();

}

ColorPt::draw

Craig Chambers 232 CSE 501

An alternate strategy

Insert “trampoline” function to perform updates where necessary

• dispatch sequence is same 3 instructions
as for single inheritance case

• callee may be an adjustment function, which forwards to
real function

+ no cost for potential multiple inheritance where not used

+ invocations requiring adjustment may be faster, too

Craig Chambers 233 CSE 501

Example of function tables with trampolines

x

y

class Point {
int x;
int y;

void draw();
int d2o();

}

table

class ColoredThing {
Color color;

void reverse_video() {
... self.color ...

}
}

x

y

table

d2o

draw

draw

d2o color

table r_v

color

table

r_v

cp

t

r_v

class ColorPoint extends Point, ColoredThing {
void draw();

}

ColorPt::draw

self = self + 12;

jump CT::r_v;

Craig Chambers 234 CSE 501

Multiple inheritance with shared superclasses

class Point {
int x;
int y;

}

class ColorPoint extends Point {
Color color;

}

class Point3D extends Point {
int z;

}

class ColorPoint3D extends ColorPoint,
Point3D {

}

x

y

Point

Point3D

ColorPoint3D

ColorPoint

color z

Craig Chambers 235 CSE 501

First question: semantics

Question: how many x and y fields in a ColorPoint3D object?

• treat each path to Point as a distinct subcomponent?

• treat shared Point as a single subcomponent?

Answer depends mostly on whether subclassing is for
private implementation (maintain separate hidden copies)
or public classification (share a single visible copy)

Craig Chambers 236 CSE 501

Second question: implementation

If private, then replicate superclass along each path

• the default in C++

• need new language constructs to resolve ambiguity

• don’t need new implementation techniques

If public, then have only one embedded copy
of shared superclass

• virtual base class in C++,
the default (only) case in most other OOPLs

• embedding won’t work any more
⇒ need new implementation techniques

Craig Chambers 237 CSE 501

Implementing shared superclasses

Store offset of shared superclass’s embedding in entry in
function table

• load offset when accessing an instance variable
in shared superclass (+3 instructions)

• could put offset or pointer in object,
trading space in object for faster access (+1 instruction)

• could store offsets of shared indirect superclasses à la displays,
trading space for faster access

• no effect when invoking method,
other than trampoline stub functions

Cannot type-cast from shared superclass to subclass, in C++

• no fixed offset ⇒ depends on dynamic class of object

If sharing of common superclasses is the default,
significant overhead when accessing inherited instance vars

• is this implementation strategy good
for languages other than C++?
for C++?

Craig Chambers 238 CSE 501

Example of shared superclasses (part 1)

x

y

class Point {
int x;
int y;

void draw();
int d2o();

}

table

x

y

table

d2o

draw

draw

d2o

color

table

class ColorPoint extends Point {
Color color;

void draw();
void reverse_video();

}

d2o

draw

r_v

Point

+8

ColorPt::r_v

ColorPt::draw

-8

Craig Chambers 239 CSE 501

Example of shared superclasses (part 2)

x

y

table

d2o

draw

z

table

class Point3D extends Point {
int z;

void draw();
int d2o();

}

d2o

draw

Point

Pt3D::d2o
-8

Pt3D::draw

-8

Craig Chambers 240 CSE 501

Example of shared superclasses (part 3)

x

y

table

d2o

draw

color

table

class ColorPoint3D extends ColorPoint,
Point3D {

void draw();
}

d2o

draw

Point

z

table

d2o

draw

r_v

Point

table

d2o

draw

r_v

ColorPt

Point3D

Pt3D::d2o

ColorPt::r_v

+12

+4

-4

+8

-12

-8

-20

CPt3D::draw

Point

Craig Chambers 241 CSE 501

Restricted multiple inheritance

Some languages (e.g. Theta, Java, C#) support only single
inheritance for implementation, but multiple inheritance from
interfaces

If receiver of class type, then can apply prefixing
and use regular single-inheritance sequence
for method invocation and instance variable access

If receiver of interface type, then ...?

• may not have to consider instance variable access
(e.g. in Theta, Java, C#)

Craig Chambers 242 CSE 501

Bidirectional object layout

Can adapt C++ MI layout rules, exploiting MI restrictions,
using “bidirectional object layout” [Myers 95]

• only one superclass, whose layout is embedded in middle
of subclass layout

• main function table pointer for the class in middle

• instance variables added to bottom end, prefixing style

• function table pointers for interfaces added to top end,
reverse prefixing style

• use interior pointers based on static type to select right
function table pointer

• pointer arithmetic only for interface types

• no instance variables in interfaces,
so no need for shared superclass offsets

+ fast instance variable access, message dispatching

+ simpler than regular C++ MI rules

+ can do compaction of function tables to reduce space cost

• # of tables per object & size of tables

+ may even be used in C++ to optimize common case

Craig Chambers 243 CSE 501

Example

x

y

class Point {
int x; int y;

void draw();
int d2o();

}

table

interface ColoredThing {
void reverse_video();

}

table

x

table

d2o

draw

draw

d2o

table r_v

color

y

r_vt

cp

r_v

ColorPt::draw

self = self + 4;

jump ColPt::r_v;

ColorPt::r_v

class ColorPoint extends Point
implements ColoredThing {

Color color;
void draw();
void reverse_video();

}

Craig Chambers 244 CSE 501

Summary

Notes:

• instruction sequences fare poorly on pipelined processors:
data-dependent loads & jumps

• type-casts have run-time cost, with multiple inheritance

• multiple inheritance leads to interior pointers;
bad for GC, debugging, object identity testing, ...

• multiple inheritance leads to multiple function table pointers,
particularly with shared superclasses

• no inlining of dynamically-dispatched calls

language
model

impl.
strategy

instance var
access

method
invocation

single
inheritance

prefixing 1 instruction 3 instructions

multiple
inheritance

embedding/
offsets

1 instruction 5 instructions

embedding/
trampolines

1 instruction 3 or 5
instructions

MI with shared
superclasses

embedding/
trampolines/
class offsets

1, 2, or 4
instructions

3 or 5
instructions

restricted MI bidirectional
/trampolines

1 instruction 3 or 5
instructions

Craig Chambers 245 CSE 501

Limitations of table-based techniques

Table-based techniques work well when:

• have static type information to use to map message/
instance variable names to offsets in tables/objects

• not true in dynamically typed languages

• cannot extend classes with new operations except via
subclassing

• not true in languages with open classes (e.g. MultiJava [Clifton
et al. 00]) or multiple dispatching (e.g. CLOS, Dylan, Cecil)

• cannot modify classes dynamically

• not true in fully reflective languages (e.g. Smalltalk, Self, CLOS)

• memory loads and indirect jumps are inexpensive

• increasingly less true with faster hardware

Craig Chambers 246 CSE 501

Dynamic table-based implementations

Standard implementation: global hash table in runtime system

• indexed by class × msg

• filled dynamically as program runs

• can be flushed after reflective operations

+ reasonable space cost

+ incremental

− fair average-case dispatch time, poor worst-case time

Refinement: hash table per message name

• each call site knows statically which table to consult

+ faster dispatching

Alternative refinement: fixed-size hash table per class

• each call site knows statically which bucket offset to search,
e.g. for invocations on Java interfaces [Alpern et al. 01]

Craig Chambers 247 CSE 501

Inline caching

Give each dynamically-dispatched call site its own
small method lookup cache

+ call site knows its message name

+ cache is isolated from other call sites

Trick: use machine call instruction itself as a one-element cache

• initially: call runtime system’s Lookup routine

• Lookup routine patches call instruction to branch to
invoked method

• record receiver class

• next time through, jump directly to expected target method

• method checks whether current receiver class is same as last
receiver class

• if so, then cache hit (90-95% frequency, for Smalltalk)

• if not, then call Lookup and rebind cache

+ fast dispatch sequence if cache hit (≈4 instructions plus call)

+ hardware call prefetching works well

− exploits self-modifying code

− low performance if not a cache hit

[Deutsch & Schiffman 84]

Craig Chambers 248 CSE 501

Example of inline caching

Initially:

After caching target method:

...

call Lookup
msg: “draw”
class:

...

...

call Lookup
msg: “draw”
class: CPt

...

if cache.class ≠
self.class then

call Lookup
...

ColorPoint::draw()

Craig Chambers 249 CSE 501

Polymorphic inline caching (PIC)

Idea: support a multi-element cache by generating a
call-site-specific dispatcher stub

+ fast dispatching even if several classes are common

− still slow performance if many classes equally common

− some space cost

Foreshadowing:
dispatching stubs record dynamic profile data
of which receiver classes occur at which call sites

[Hölzle et al. 91]

Craig Chambers 250 CSE 501

Example of polymorphic inline caching

After a few receiver classes:

...

call Lookup
msg: “draw”

...

switch (self.class) {
case ColorPt:
case ColorPt3D:
case Point:
default: call Lookup

}

ColorPt::draw()

Point::draw()

Craig Chambers 251 CSE 501

Implementing the dispatcher stub switch

In original PIC design, switch implemented with
a linear chain of class identity tests

Alternatively, can implement with a binary search,
exploiting ordering of integer class IDs or addresses

+ avoid worst-case behavior of long linear searches

+ a single test can direct many classes to same target method

− requires global knowledge to construct dispatchers

In traditional compilers, switch implemented with a jump table,
akin to C++ dispatch tables

Can blend table-based lookups, linear search, and
binary search [Chambers & Chen 99]

• exploit available static analysis of possible receiver classes,
profile information of likely receiver classes

• construct dispatcher best balancing
expected dispatching speed against dispatch space cost

Craig Chambers 252 CSE 501

Handling multiple dispatching

Languages with multimethods (e.g. CLOS, Dylan, Cecil) allow
methods to dispatch on the run-time classes of any of the
arguments

• call sites do not know statically which arguments may be
dispatched upon

Implementation schemes:

• hash table indexed by N keys [Kiczales & Rodriguez 89]

• N-deep tree of hash tables, each indexed by 1 key
[Dussud 89]

• N-deep DAG of 1-key dispatches
[Chen & Turau 94, Chambers & Chen 99]

• compressed N+1-dimensional dispatch table
[Amiel et al. 94, Pang et al. 99]

Probably more efficient to support multimethods directly
than if simulated with double-dispatching [Ingalls 86]
or visitor pattern [Gamma et al. 95]

