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Implementing Object-Oriented Languages

Key features:

• inheritance (possibly multiple)

• subtyping & subtype polymorphism

• message passing, dynamic binding

Subtype polymorphism is the key problem

• support uniform representation of data
(analogous to boxing for polymorphic data)

• e.g. every object has a class pointer, or a virtual fn table pointer,
at a known offset

• organize layout of data to make instance variable access
and method lookup & invocation fast

• multiple inheritance complicates this

• perform static analysis to bound polymorphism

• perform transformations to reduce polymorphism
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Implementing single inheritance

Key idea: prefixing

• layout of superclass is a prefix of layout of subclass

+ instance variable access is just a load or store

+ can add new instance variables in subclasses

− cannot override or undefine instance variables

− multiple inheritance...

// OK: subclass polymorphism
Point p = new ColorPoint(3,4,Blue);

// OK: x  and y  have same offsets in all Point  subclasses
int manhattan_distance = p.x + p.y;

x

y

x

y

color

class Point {
int x;
int y;

}

class ColorPoint
extends Point {

Color color;
}
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Implementing dynamic dispatching (virtual functions)

Key idea: class-specific table of function pointers

• store pointer to table in each object

• assign table offset to method name,
just as instance variable offsets are assigned

• exploit prefixing in function table layout:
superclass’s function table layout is a prefix of
subclass’s function table layout

Dynamically-dispatched call sequence:

T obj = ...; ... obj.msg() ... ⇒
load *(obj + offset T:: table ), table
load *(table + offset T::msg ), method
call *method

+ dynamic dispatching is fast & constant-time

+ can add new methods, override old ones
(can undefine methods by leaving hole in function table)

− extra word of memory per object

− loads, indirect calls can be slow on pipelined machine

− no inlining
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Example of function tables

x

y

class Point {
int x;
int y;

void draw();
int distance2origin();

}

table

class ColorPoint extends Point {
Color color;

void draw();
void reverse_video();

}

x

y

color

table

d2o

Point::draw

ColorPt::draw

ColorPt::r_v

draw

draw

d2o

Point::d2o

r_v

...

...
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Multiple inheritance

Problem: prefixing doesn’t work with multiple inheritance

ColorPoint cp = new ColorPoint(3, 4, Blue);

Point p = cp; // OK

ColoredThing t = cp; // OK

// breaks:
ColorP cp2 = new ColorPoint(p.x, p.y, t.color);

x

y

color

class Point {
int x;
int y;

}

class ColoredThing {
Color color;

}

class ColorPoint
extends Point,

ColoredThing {
}

x

y

color

color

x

y

?
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Clever solution: embedding, not prefixing

Embed  layout of each superclass somewhere  in object

• e.g. concatenate layouts of immediate superclasses,
then extend with subclass’s instance variables

Trick: adjust object pointer to point to appropriate embedded
object whenever use subclass polymorphism,
based on static type of pointer

• perform pointer arithmetic on
assignments, type casts, parameter & result passing
if static type of l.h.s. differs from r.h.s.

• must test for NULL pointer and not change, though

• constants to add/subtract determined by static types &
analysis of inheritance graph, at compile-time

+ fast access to instance variables

− some type-casts (implicit or explicit) now do arithmetic

− interior pointers complicate garbage collection

− type-casts outside the class hierarchy break:

void* p = new ColorPoint(...);
ColoredThing t = (ColoredThing) p;
... t.color ... // returns p.x !
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Example

ColorPoint cp = new ColorPoint(3, 4, Blue);

Point p = cp; // OK

ColoredThing t = cp; // OK: adds 8 to cp

// now this works:
ColorP cp2 = new ColorPoint(p.x, p.y, t.color);

// this works, too:
ColorP cp3 = (ColorPoint) t; // subtracts 8 from t

x

y

color

class Point {
int x;
int y;

}

class ColoredThing {
Color color;

}

class ColorPoint
extends Point,

ColoredThing {
}

x

y

color

cp

p

t
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Multiple inheritance and dynamic dispatching

Extend embedding to implement dynamic dispatching, too

• replicate function tables for each immediate superclass,
to avoid clashes in method offsets

− multiple function table pointers in object

ColorPoint cp = new ColorPoint(3, 4, Blue);

... cp.distance2origin() ...; // works

... cp.draw() ...; // works

ColoredThing t = cp; // works; adds 12 to cp

... t.reverse_video() ...; // works
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Example of embedded function tables

x

y

class Point {
int x;
int y;

void draw();
int d2o();

}

table

class ColoredThing {
Color color;

void reverse_video() {
... self.color ...

}
}

x

y

table

d2o

draw

draw

d2o color

table r_v

color

table

r_v

cp

t

ColorPt::draw

class ColorPoint extends Point, ColoredThing {
void draw();

}
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A problem

Simple embedding doesn’t always work!

... cp.reverse_video() ...;

// breaks: accesses self.x  instead of self.color
// inside reverse_video  method
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Analysis of the problem

Problem:
implicit cast of actual receiver to formal receiver ignored

• sometimes need to do pointer arithmetic

How to fix it?

• caller can’t do it:
doesn’t know type of formal in callee

• callee can’t do it:
doesn’t know type of actual in caller

• function tables can do it:
caller’s offset known, callee’s offset known
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An implementation strategy

Add an extra column to function table,
containing required pointer adjustment for receiver

Fetch and add adjustment to receiver pointer as part of call:

T obj = ...; ... obj.msg() ... ⇒
load *(obj + offset T:: table ), table

load *(table + offset T::msg *2 ), method

load *(table + offset T::msg *2+4), delta

add obj, delta, obj;
call *method

− 5 instructions, not 3

• costs even if multiple inheritance not used!

− some space cost

− only works for receiver;
need some other mechanism if argument or result types
change via method overriding

[Stroustrup 87]
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Example of function tables with offsets

r_v 0

d2o

draw 0

0

x

y

class Point {
int x;
int y;

void draw();
int d2o();

}

table

class ColoredThing {
Color color;

void reverse_video() {
... self.color ...

}
}

x

y

table

draw

d2o color

table r_v

color

table

cp

t

00

0

r_v 12

class ColorPoint extends Point, ColoredThing {
void draw();

}

ColorPt::draw
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An alternate strategy

Insert “trampoline” function to perform updates where necessary

• dispatch sequence is same 3 instructions
as for single inheritance case

• callee may be an adjustment function, which forwards to
real function

+ no cost for potential multiple inheritance where not used

+ invocations requiring adjustment may be faster, too
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Example of function tables with trampolines

x

y

class Point {
int x;
int y;

void draw();
int d2o();

}

table

class ColoredThing {
Color color;

void reverse_video() {
... self.color ...

}
}

x

y

table

d2o

draw

draw

d2o color

table r_v

color

table

r_v

cp

t

r_v

class ColorPoint extends Point, ColoredThing {
void draw();

}

ColorPt::draw

self = self + 12;

jump CT::r_v;
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Multiple inheritance with shared superclasses

class Point {
int x;
int y;

}

class ColorPoint extends Point {
Color color;

}

class Point3D extends Point {
int z;

}

class ColorPoint3D extends ColorPoint,
Point3D {

}

x

y

Point

Point3D

ColorPoint3D

ColorPoint

color z
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First question: semantics

Question: how many x and y fields in a ColorPoint3D object?

• treat each path to Point  as a distinct subcomponent?

• treat shared Point  as a single subcomponent?

Answer depends mostly on whether subclassing is for
private implementation (maintain separate hidden copies)
or public classification (share a single visible copy)
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Second question: implementation

If private, then replicate superclass along each path

• the default in C++

• need new language constructs to resolve ambiguity

• don’t need new implementation techniques

If public, then have only one embedded copy
of shared superclass

• virtual  base class in C++,
the default (only) case in most other OOPLs

• embedding won’t work any more
⇒ need new implementation techniques
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Implementing shared superclasses

Store offset of shared superclass’s embedding in entry in
function table

• load offset when accessing an instance variable
in shared superclass (+3 instructions)

• could put offset or pointer in object,
trading space in object for faster access (+1 instruction)

• could store offsets of shared indirect superclasses à la displays,
trading space for faster access

• no effect when invoking method,
other than trampoline stub functions

Cannot type-cast from shared superclass to subclass, in C++

• no fixed offset ⇒ depends on dynamic class of object

If sharing of common superclasses is the default,
significant overhead when accessing inherited instance vars

• is this implementation strategy good
for languages other than C++?
for C++?
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Example of shared superclasses (part 1)

x

y

class Point {
int x;
int y;

void draw();
int d2o();

}

table

x

y

table

d2o

draw

draw

d2o

color

table

class ColorPoint extends Point {
Color color;

void draw();
void reverse_video();

}

d2o

draw

r_v

Point

+8

ColorPt::r_v

ColorPt::draw

-8
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Example of shared superclasses (part 2)

x

y

table

d2o

draw

z

table

class Point3D extends Point {
int z;

void draw();
int d2o();

}

d2o

draw

Point

Pt3D::d2o
-8

Pt3D::draw

-8
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Example of shared superclasses (part 3)

x

y

table

d2o

draw

color

table

class ColorPoint3D extends ColorPoint,
Point3D {

void draw();
}

d2o

draw

Point

z

table

d2o

draw

r_v

Point

table

d2o

draw

r_v

ColorPt

Point3D

Pt3D::d2o

ColorPt::r_v

+12

+4

-4

+8

-12

-8

-20

CPt3D::draw

Point
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Restricted multiple inheritance

Some languages (e.g. Theta, Java, C#) support only single
inheritance for implementation, but multiple inheritance from
interfaces

If receiver of class type, then can apply prefixing
and use regular single-inheritance sequence
for method invocation and instance variable access

If receiver of interface type, then ...?

• may not have to consider instance variable access
(e.g. in Theta, Java, C#)
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Bidirectional object layout

Can adapt C++ MI layout rules, exploiting MI restrictions,
using “bidirectional object layout” [Myers 95]

• only one superclass, whose layout is embedded in middle
of subclass layout

• main function table pointer for the class in middle

• instance variables added to bottom end, prefixing style

• function table pointers for interfaces added to top end,
reverse prefixing style

• use interior pointers based on static type to select right
function table pointer

• pointer arithmetic only for interface types

• no instance variables in interfaces,
so no need for shared superclass offsets

+ fast instance variable access, message dispatching

+ simpler than regular C++ MI rules

+ can do compaction of function tables to reduce space cost

• # of tables per object & size of tables

+ may even be used in C++ to optimize common case
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Example

x

y

class Point {
int x; int y;

void draw();
int d2o();

}

table

interface  ColoredThing {
void reverse_video();

}

table

x

table

d2o

draw

draw

d2o

table r_v

color

y

r_vt

cp

r_v

ColorPt::draw

self = self + 4;

jump ColPt::r_v;

ColorPt::r_v

class ColorPoint extends Point
implements ColoredThing  {

Color color;
void draw();
void reverse_video();

}
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Summary

Notes:

• instruction sequences fare poorly on pipelined processors:
data-dependent loads & jumps

• type-casts have run-time cost, with multiple inheritance

• multiple inheritance leads to interior pointers;
bad for GC, debugging, object identity testing, ...

• multiple inheritance leads to multiple function table pointers,
particularly with shared superclasses

• no inlining of dynamically-dispatched calls

language
model

impl.
strategy

instance var
access

method
invocation

single
inheritance

prefixing 1 instruction 3 instructions

multiple
inheritance

embedding/
offsets

1 instruction 5 instructions

embedding/
trampolines

1 instruction 3 or 5
instructions

MI with shared
superclasses

embedding/
trampolines/
class offsets

1, 2, or 4
instructions

3 or 5
instructions

restricted MI bidirectional
/trampolines

1 instruction 3 or 5
instructions
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Limitations of table-based techniques

Table-based techniques work well when:

• have static type information to use to map message/
instance variable names to offsets in tables/objects

• not true in dynamically typed languages

• cannot extend classes with new operations except via
subclassing

• not true in languages with open classes (e.g. MultiJava [Clifton
et al. 00]) or multiple dispatching (e.g. CLOS, Dylan, Cecil)

• cannot modify classes dynamically

• not true in fully reflective languages (e.g. Smalltalk, Self, CLOS)

• memory loads and indirect jumps are inexpensive

• increasingly less true with faster hardware
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Dynamic table-based implementations

Standard implementation: global hash table in runtime system

• indexed by class × msg

• filled dynamically as program runs

• can be flushed after reflective operations

+ reasonable space cost

+ incremental

− fair average-case dispatch time, poor worst-case time

Refinement: hash table per message name

• each call site knows statically which table to consult

+ faster dispatching

Alternative refinement: fixed-size hash table per class

• each call site knows statically which bucket offset to search,
e.g. for invocations on Java interfaces [Alpern et al. 01]
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Inline caching

Give each dynamically-dispatched call site its own
small method lookup cache

+ call site knows its message name

+ cache is isolated from other call sites

Trick: use machine call instruction itself as a one-element cache

• initially: call runtime system’s Lookup  routine

• Lookup  routine patches call instruction to branch to
invoked method

• record receiver class

• next time through, jump directly to expected target method

• method checks whether current receiver class is same as last
receiver class

• if so, then cache hit (90-95% frequency, for Smalltalk)

• if not, then call Lookup  and rebind cache

+ fast dispatch sequence if cache hit (≈4 instructions plus call)

+ hardware call prefetching works well

− exploits self-modifying code

− low performance if not a cache hit

[Deutsch & Schiffman 84]
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Example of inline caching

Initially:

After caching target method:

...

call Lookup
msg: “draw”
class:

...

...

call Lookup
msg: “draw”
class: CPt

...

if cache.class ≠
self.class then

call Lookup
...

ColorPoint::draw()
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Polymorphic inline caching (PIC)

Idea: support a multi-element cache by generating a
call-site-specific dispatcher stub

+ fast dispatching even if several classes are common

− still slow performance if many classes equally common

− some space cost

Foreshadowing:
dispatching stubs record dynamic profile data
of which receiver classes occur at which call sites

[Hölzle et al. 91]
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Example of polymorphic inline caching

After a few receiver classes:

...

call Lookup
msg: “draw”

...

switch (self.class) {
case ColorPt:
case ColorPt3D:
case Point:
default: call Lookup

}

ColorPt::draw()

Point::draw()
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Implementing the dispatcher stub switch

In original PIC design, switch implemented with
a linear chain of class identity tests

Alternatively, can implement with a binary search,
exploiting ordering of integer class IDs or addresses

+ avoid worst-case behavior of long linear searches

+ a single test can direct many classes to same target method

− requires global knowledge to construct dispatchers

In traditional compilers, switch implemented with a jump table,
akin to C++ dispatch tables

Can blend table-based lookups, linear search, and
binary search [Chambers & Chen 99]

• exploit available static analysis of possible receiver classes,
profile information of likely receiver classes

• construct dispatcher best balancing
expected dispatching speed against dispatch space cost
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Handling multiple dispatching

Languages with multimethods (e.g. CLOS, Dylan, Cecil) allow
methods to dispatch on the run-time classes of any of the
arguments

• call sites do not know statically which arguments may be
dispatched upon

Implementation schemes:

• hash table indexed by N keys [Kiczales & Rodriguez 89]

• N-deep tree of hash tables, each indexed by 1 key
[Dussud 89]

• N-deep DAG of 1-key dispatches
[Chen & Turau 94, Chambers & Chen 99]

• compressed N+1-dimensional dispatch table
[Amiel et al. 94, Pang et al. 99]

Probably more efficient to support multimethods directly
than if simulated with double-dispatching [Ingalls 86]
or visitor pattern [Gamma et al. 95]


